
邮 件:an_zhang@ustc.edu.cn
所属单位:人工智能与数据科学学院
个人主页: https://anzhang314.github.io/
实验室主页:https://alphalab-ustc.github.io/index.html
主要研究方向:生成式人工智能,大模型智能体,个性化大模型,大模型安全等。
张岸,特任教授,2016年获得东南大学数学院本科学位,2021年获得新加坡国立大学统计和数据科学学院博士学位,2021年到2024年在新加坡国立大学计算机科学学院担任研究员,2022-2023年担任新加坡SEA AI Lab双聘研究员,2025年回到中国科学技术大学任教,担任特任教授,博导。主要研究领域为生成模型、大模型驱动的智能体、可信人工智能,特别关注于智慧校园、大模型安全、以及个性化场景,致力于下一代通用人工智能模型的关键能力与性质研究。相关工作在NeurIPS、ICLR、ICML、WWW、KDD、SIGIR、TOIS、TPAMI等顶级国际会议和期刊发表录用长文30余篇,其中超过3篇论文入选了最高引和最具影响力榜单,根据谷歌学术网统计,截止2025年10月,引用三千余次,H-Index指数为25,荣获2025年 Web领域女性新星奖(Rising Stars of Women in Web Award)。
教授课程:
1. 生成式人工智能概述
2. 人工智能与机器学习基础
近两年代表论著:
Generative Recommendation:
Xiaoyu Kong, Leheng Sheng, Junfei Tan, Yuxin Chen, Jiancan Wu, An Zhang, Xiang Wang, Xiangnan He. MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation. Arxiv 2025.
Guoqing Hu, An Zhang*, Shuchang Liu, Wenyu Mao, Jiancan Wu, Xun Yang, Xiang Li, Lantao Hu, Han Li, Kun Gai, Xiang Wang. Fading to Grow: Growing Preference Ratios via Preference Fading Discrete Diffusion for Recommendation. NeurIPS 2025.
Yingzhi He, Xiaohao Liu, An Zhang*, Yunshan Ma, Tat-Seng Chua. LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation. KDD 2025.
Guoqing Hu, An Zhang*, Shuo Liu, Zhibo Cai, Xun Yang, Xiang Wang. AlphaFuse: Learn ID Embeddings for Sequential Recommendation in Null Space of Language Embeddings. SIGIR 2025.
Leheng Sheng, An Zhang*, Yi Zhang, Yuxin Chen, Xiang Wang, Tat-Seng Chua. Language Representations Can be What Recommenders Need: Findings and Potentials. ICLR 2025.
Shuo Liu, An Zhang*, Guoqing Hu, Hong Qian, Tat Seng Chua. Preference diffusion for recommendation. ICLR 2025.
Yuxin Chen, Junfei Tan, An Zhang*, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, Tat-Seng Chua. On Softmax Direct Preference Optimization for Recommendation. NeurIPS 2024.
An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, Tat-Seng Chua. On Generative Agents in Recommendation. SIGIR 2024.
LLM Reasoning/Agentic:
Leheng Sheng, An Zhang*, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, Tat-Seng Chua. On Reasoning Strength Planning in Large Reasoning Models. NeurIPS 2025.
Yaorui Shi, Sihang Li, Chang Wu, Zhiyuan Liu, Junfeng Fang, Hengxing Cai, An Zhang, Xiang Wang. Search and Refine During Think: Facilitating Knowledge Refinement for Improved Retrieval-Augmented Reasoning. NeurIPS 2025.
Yuxin Chen, Yiran Zhao, Yang Zhang, An Zhang, Kenji Kawaguchi, Shafiq Joty, Junnan Li, Tat-Seng Chua, Michael Qizhe Shieh, Wenxuan Zhang. The Emergence of Abstract Thought in Large Language Models Beyond Any Language. NeurIPS 2025.
Jingnan Zheng, Han Wang, An Zhang*, Tai D. Nguyen, Jun Sun, Tat-Seng Chua. ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation. NeurIPS 2024.
LLM Safety:
Jingnan Zheng, Xiangtian Ji, Yijun Lu, Chenhang Cui, Weixiang Zhao, Gelei Deng, Zhenkai Liang, An Zhang*, Tat-Seng Chua. RSafe: Incentivizing proactive reasoning to build robust and adaptive LLM safeguards. NeurIPS 2025.
Chenhang Cui, Gelei Deng, An Zhang*, Jingnan Zheng, Yicong Li, Lianli Gao, Tianwei Zhang, Tat-Seng Chua. Safe + Safe = Unsafe? Exploring How Safe Images Can Be Exploited to Jailbreak
Large Vision-Language Models. NeurIPS 2025.
Chenhang Cui, An Zhang*, Yiyang Zhou, Zhaorun Chen, Gelei Deng, Huaxiu Yao, Tat-Seng Chua. Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment. ICLR 2025.
Jingnan Zheng, Jiahao Liu, An Zhang*, Jun Zeng, Ziqi Yang, Zhenkai Liang, Tat-Seng Chua. MaskDroid: Robust Android malware detection with masked graph representations. ASE 2024.
